Méthodes bioinformatiques pour l'analyse de données de séquençage dans le contexte du cancer

Informations générales
Nom
Rudewicz
Prénom
Justine
Diplôme
Thèse
Année
2017
Détails de la thèse/HDR
Résumé en français
Le cancer résulte de la prolifération excessive de cellules qui dérivent toutes de la même cellule initiatrice et suivent un processus Darwinien de diversification et de sélection. Ce processus est défini par l'accumulation d'altérations génétiques et épigénétiques dont la caractérisation est un élément majeur pour pouvoir proposer une thérapie ciblant spécifiquement les cellules tumorales. L'avènement des nouvelles technologies de séquençage haut débit permet cette caractérisation à un niveau moléculaire. Cette révolution technologique a entraîné le développement de nombreuses méthodes bioinformatiques. Dans cette thèse, nous nous intéressons particulièrement au développement de nouvelles méthodes computationnelles d'analyse de données de séquençage d'échantillons tumoraux permettant une identification précise d'altérations spécifiques aux tumeurs et une description fine des sous populations tumorales. Dans le premier chapitre, il s'agît d'étudier des méthodes d'identification d'altérations ponctuelles dans le cadre de séquençage ciblé, appliquées à une cohorte de patientes atteintes du cancer du sein. Nous décrivons deux nouvelles méthodes d'analyse, chacune adaptée à une technologie de séquençage, spécifiquement Roche 454 et Pacifique Biosciences.Dans le premier cas, nous avons adapté des approches existantes au cas particulier de séquences de transcrits. Dans le second cas, nous avons été confronté à un bruit de fond élevé entraînant un fort taux de faux positifs lors de l'utilisation d'approches classiques. Nous avons développé une nouvelle méthode, MICADo, basée sur les graphes de De Bruijn et permettant une distinction efficace entre les altérations spécifiques aux patients et les altérations communes à la cohorte, ce qui rend les résultats exploitables dans un contexte clinique. Le second chapitre aborde l'identification d'altérations de nombre de copies. Nous décrivons l'approche mise en place pour leur identification efficace à partir de données de très faible couverture. L'apport principal de ce travail consiste en l'élaboration d'une stratégie d'analyse statistique afin de mettre en évidence des changements locaux et globaux au niveau du génome survenus durant le traitement administré à des patientes atteintes de cancer du sein. Notre méthode repose sur la construction d'un modèle linéaire permettant d'établir des scores de différences entre les échantillons avant et après traitement. Dans le troisième chapitre, nous nous intéressons au problème de reconstruction clonale. Cette problématique récente est actuellement en plein essor, mais manque cependant d'un cadre formel bien établi. Nous proposons d'abord une formalisation du problème de reconstruction clonale. Ensuite nous utilisons ce formalisme afin de mettre en place une méthode basée sur les modèles de mélanges Gaussiens. Cette méthode utilise les altérations ponctuelles et de nombre de copies - comme celles abordées dans les deux chapitres précédents - afin de caractériser et quantifier les différentes populations clonales présentes dans un échantillon tumoral.