INRIA
Pleiade
33405 Bordeaux
France
Scaling the solving of Ordinary Differential Equation for Computational Biology (and Deep Learning)
In biology, the vast majority of systems can be modeled as ordinary differential equations (ODEs). Modeling more finely biological objects leads to increase the number of equations. Simulating ever larger systems also leads to increasing the number of equations. Therefore, we observe a large increase in the size of the ODE systems to be solved. A major lock is the limitation of ODE numerical resolution software (ODE solver) to a few thousand equations due to prohibitive calculation time.
Computational Algorithms for Protein Structures and Interactions
54500 Nancy
France
M2 - integration of -omics data into metabolic regulatory network analysis
<p><strong>M2 internship in bioinformatics: integration of -omics data into metabolic regulatory network analysis</strong></p><p>Adaptation of bacterial growth to environmental or genetic perturbations involves numerous regulations. Advanced –omics technologies allow monitoring the adaptive behavior, by tracking down modifications of metabolite, mRNA and enzyme concentrations. The biggest challenge nowadays is to integrate the data and especially to make sense of them.
Computational developments for integrative structural biology : small-angle scattering using polynomial expansions
While crystallography has been providing atomic-resolution structures of biomolecules for over half a century, the real challenge of today’s biophysicists is to correlate molecules’ structure and dynamics in solution with their function.
Small-angle scattering (SAS) is the fundamental techniques for structural studies of biological systems in solution.
Ingénieur C++
L'équipe d'algorithmique en bioinformatique (Bonsai) à Inria Lille, située au sein du laboratoire CRIStAL, recrute un ingénieur ayant de bonnes connaissances en programmation C++ pour un CDD de 24 mois à partir de Septembre 2017. Texte de l'annonce ci-dessous:
Algorithmic differentiation of C/C++ force fields used in biophysics
Description : voir url
Studying the impact on vision of silencing cells in the retina
We are seeking an undergraduate student interested in doing a Master thesis, possibly followed by a funded Ph.D. in our group Biovision at INRIA Sophia Antipolis lead by Dr. Bruno Cessac.
The detailed proposition can be found here https://team.inria.fr/biovision/files/2016/12/M2_Intership_Proposal.pdf
Neuroimagerie Fonctionelle (IRMf)
Ingénieur développeur en Neuroimagerie Fonctionelle (IRMf)
Merci d’envoyer vos candidatures à : Florence Forbes (florence.forbes@inria.fr)